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Machine learning (ML) systems are not islands. 

They are part of broader complex systems.

To understand and mitigate the risks and harms of using ML, 
we must remove our optimization blinders & study the 
broader complex systems in which ML systems operate.
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Machine learning life-cycle
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Age of Prediction
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A prediction task

“At a given risk score, Black patients 
are considerably sicker than White 
patients, … The bias arises because
the algorithm predicts health care
costs rather than illness, but unequal 
access to care means that we spend 
less money caring for Black patients 
than for White patients.”
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Risk assessment: A popular prediction task

• Why is it popular?

1. Because machine learning people know a lot about it – i.e., it is a 
“low-hanging fruit”.

2. Because human decision-makers like the output of these tasks; 
they are easily understandable.



Issues 
with risk 
assessment





Parity (a.k.a. fairness) measures come from the 
confusion (a.k.a. error) matrix
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Impossibility result for risk assessment

Condition Chouldechova 
(2016)
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et al. (2016)

Eliassi-Rad & 
Fitelson (2018)

Mutual exclusivity between groups a and b ✔ ✕ ✕

Unequal base rates:  Pra(Y = 1) ≠ Prb(Y = 1) ✔ ✕
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There are more impossibility results 
for risk assessment and group fairness 

• To read about more impossibilities, download 
http://fitelson.org/exploring_impossibility.pdf

• To find new ones, download the Mathematica notebook 
at http://fitelson.org/exploring_impossibility.nb

Branden Fitelson

http://fitelson.org/exploring_impossibility.pdf
http://fitelson.org/exploring_impossibility.nb


Fallout from the impossibility theorems

• Get rid of one of the parities

• Put bounds on the parities

• Deborah Hellman (University of Virginia Law School)

• Predictive parity captures “what you ought to believe”

• True positive and false positive parities capture “what you ought to do”

• The algorithm ought not be thinking about the right-making properties 
when deliberating in many cases

è If you are going to drop a parity, drop predictive parity

Predictive parity:  Pra(Y = 1 ∣ C = 1) = Prb(Y = 1 ∣ C = 1)
True positive parity:  Pra(C = 1 ∣ Y = 1) = Prb(C = 1 ∣ Y = 1)
False positive parity:  Pra(C = 1 ∣ Y = 0) = Prb(C = 1 ∣ Y = 0)

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3418528 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3418528


What about individual fairness?
• Dwork et al. [2012]: Similar individuals should be treated similarly.

• Will Fleisher. What’s fair about individual fairness? AIES 2021: 480-490.
• Four problems for individual fairness as a definition and as a method for ensuring fairness:

1. Insufficiency of similar treatment

2. Systematic bias and arbiters (implicit human biases)

3. Prior moral judgments about task relevance and moral values

4. Incommensurability

• Takeaways:

• Individual fairness is inadequate as a definition of fairness. 

• Individual fairness should not be used as a sole means for determining fairness 
(or detecting bias).

Will Fleisher
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Oximeter Data

https://www.nejm.org/doi/full/10.1056/NEJMc2029240 
(Dec 2020) 

https://n.pr/3vRUjbf 

https://www.nejm.org/doi/full/10.1056/NEJMc2029240
https://n.pr/3vRUjbf


https://emcrit.org/pulmcrit/racism-oximetry/ (Dec 2020)

https://emcrit.org/pulmcrit/racism-oximetry/


https://doi.org/10.1097/00000542-200504000-00004 (April 2005) 

https://doi.org/10.1097/00000542-200504000-00004


https://doi.org/10.1097/00000542-199206000-00024 (June 1992) 

https://doi.org/10.1097/00000542-199206000-00024


https://doi.org/10.1378/chest.97.6.1420 (June 1990)

https://doi.org/10.1378/chest.97.6.1420


https://pubmed.ncbi.nlm.nih.gov/2463349/ (Fall 1987)

https://pubmed.ncbi.nlm.nih.gov/2463349/


Datasheets for Datasets by Timnit Gebru et al.

Example datasheet for Pang and Lee’s polarity dataset [ACL 2004]

https://arxiv.org/abs/1803.09010
https://cacm.acm.org/magazines/2021/12/256932-datasheets-for-datasets/ (Dec 2021) 

https://arxiv.org/abs/1803.09010
https://cacm.acm.org/magazines/2021/12/256932-datasheets-for-datasets/


Datasheets for Datasets by Timnit Gebru et al.

Motivation

Composition
Collection Process

Uses

Preprocessing/cleaning/labeling

Distribution

Maintenance

Example datasheet for Pang and Lee’s polarity dataset [ACL 2004]

https://arxiv.org/abs/1803.09010
https://cacm.acm.org/magazines/2021/12/256932-datasheets-for-datasets/ (Dec 2021) 

https://arxiv.org/abs/1803.09010
https://cacm.acm.org/magazines/2021/12/256932-datasheets-for-datasets/


Can we generate “aspirational” data? 
Aspirational data: synthetic data 
from ideally fair circumstances

Deborah Ramirez
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Rawls’ well-ordered society

A society is well-ordered when it …

“advances the good of its members”

and

“is effecFvely regulated by a public concepFon 
of jusFce”

John Rawls



Rawls’ Principle of Fair Equality of Opportunity 
(FEO)

• FEO governs the fair allocation of advantageous positions 
(e.g., high-paying jobs) in society.

• FEO can be formalized as a conditional independence (CI)

• The probability of securing an advantageous position ought to be
independent of protected variables (e.g., race) given justified 
variables (e.g., talent): 

John Rawls



RAWLSNET

Question: Given an unfair (in the Rawlsian sense) outcome and the
capability to alter some (but not all) decision-making processes, how
can one satisfy FEO?

Answer: RAWLSNET, a system for altering the parameters of Bayesian
Network (BN) models to satisfy FEO

David Liu, Zohair Shafi, Will Fleisher, et al. RAWLSNET: Altering Bayesian Networks to
Encode Rawlsian Fair Equality of Opportunity. AIES 2021: 745-755.

Will Fleisher Scott AlfeldDavid Liu Zohair Shafi



RAWLSNET

• RAWLSNET has three components: 

1. Learn a BN.

2. Determine relevance to FEO.

3. Update parameters of the BN to sa>sfy FEO if possible. 
Otherwise, update the parameters to approximately sa>sfy FEO.



College 
Admissions
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Before and After RAWLSNET

Probability of desired outcome 
before applying RAWLSNET

Probability of desired outcome 
after applying RAWLSNET



RAWLSNET with feasibility constraints

Probability of desired outcome 
after applying RAWLSNET with feasibility constraints



Uses of RAWLSNET

1. It can be used to generate “aspirational” data: synthetic data from 
ideally fair circumstances. 

2. It can aid policy makers in decision-making.

• Example: RAWLSNET might be used to advise acceptance decisions 
for a college admissions committee. 

• Assuming distribution of talent is available in one of these 
ways, RAWLSNET will calculate the acceptance rates for 
applicants from different groups needed to satisfy FEO.

Software available at https://github.com/dliu18/rawlsnet 

https://github.com/dliu18/rawlsnet


A Proposal for Decreasing Geographical 
Inequality in College Admissions
• Talent is everywhere

• Can we use zip codes and merit to enhance diversity?

• We proposed an algorithm in 2014

• http://fitelson.org/tie.pdf

• In 2021, it was adapted by Boston 
Latin School for admissions 
decisions

Branden Fitelson

Danielle Allen

T. Eliassi-Rad, B. Fitelson. A Proposal for Decreasing Geographical Inequality in College 
Admissions. Appendix  of Chapter 12 (Talent is Everywhere by Danielle Allen) in The Future 
of Affirma/ve Ac/on, Eds: J. Renker and J. Miller, The Century FoundaOon Press, 2014. 

50
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When data are fair, but the model isn’t
Question: Given a fair data distribution and the structure of a BN, does
maximum likelihood estimation learn parameters that produce a fair
posterior distribution (i.e., one which preserves the fairness in the data
distribution)?

Ongoing work



When data are fair, but the model isn’t
Question: Given a fair data distribution and the structure of a BN, does
maximum likelihood estimation learn parameters that produce a fair
posterior distribution (i.e., one which preserves the fairness in the data
distribution)?

Answer: Not necessarily. It depends on (1) the correctness of the BN’s
structure, (2) the faithfulness of the learned joint distribution to the
BN’s structure, (3) the correctness of the learned joint distribution, and
(4) whether one is only interested in asymptotic behavior.

Ongoing work



Model Cards for 
Model Reporting

by Margaret Mitchell et al. 

https://arxiv.org/abs/1810.03993

https://arxiv.org/abs/1810.03993


Model Cards for 
Model Reporting

by Margaret Mitchell et al. 

https://arxiv.org/abs/1810.03993

Model Details

Intended Use

Factors

Metrics

Training Data Evaluation Data

Ethical Considerations

Caveats and Recommendations

https://arxiv.org/abs/1810.03993


life2vec: vector representations of human 
lives

56Germans Savcisens, et al. Using sequences of life-events to predict human lives. 
Nature Computa5onal Science, 2023. h>ps://doi.org/10.1038/s43588-023-00573-5 

https://doi.org/10.1038/s43588-023-00573-5
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Peer Review

Image courtesy of Jennifer Wortman Vaughan

http://www.jennwv.com/
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How do AI researchers describe and 
respond to the negative impact of 

their work on society?

D. Liu, P. Nanayakkara  et al. Examining Responsibility and Deliberation in AI Impact Statements and Ethics Reviews. In 
Proceedings of the 2022 AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society (AIES), August 2022. 

Will Fleisher Scott AlfeldDavid Liu Zohair ShafiDavid Liu Priyanka 
Nanayakkara

http://eliassi.org/papers/davidliu-aies2022.pdf


Examining Responsibility and Deliberation in AI Impact 
Statements and Ethics Reviews in NeurIPS 2021

Impact Statements Ethics Reviews
• Lack of agency

• Adversarial users
• Improper input or application

• Denying responsibility
• Explicitly by minimizing negative 

societal impact 
• Implicitly by not proposing 

mitigation strategies
• Assigning responsibility

• To practitioners
• To the subfield
• To future work

• Issues
• Policy vs. non-policy
• Scope

• Recommendations
• Identification vs. mitigation

• Interaction: Justification mechanisms
• Citing
• Retracting



How do AI researchers describe and 
respond to the negative impact of 

their work on society? Badly.

D. Liu, P. Nanayakkara  et al. Examining Responsibility and DeliberaUon in AI Impact Statements and Ethics Reviews. In 
Proceedings of the 2022 AAAI/ACM Conference on Ar5ficial Intelligence, Ethics, and Society (AIES), August 2022. 

Will Fleisher Scott AlfeldDavid Liu Zohair ShafiDavid Liu Priyanka 
Nanayakkara

http://eliassi.org/papers/davidliu-aies2022.pdf


Machine learning life-cycle

Image courtesy of Jennifer Wortman Vaughan
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C. Wagner, M. Strohmaier, A. Olteanu, E. Kiciman, N. Contractor, T. Eliassi-Rad. Measuring 
Algorithmically Infused Societies. Nature, 595: 197-204, 2021. https://doi.org/10.1038/s41586-021-03666-1 

Measuring Algorithmically Infused Societies
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Three challenges

• Insufficient quality of measurements

• Complex consequences of (mis)measurements 

• Limits of existing social theories



How to address these challenges?

• Insufficient quality of measurements
• Triangulate data to examine the measurement quality

• Develop guidelines and best practices

• Complex consequences of (mis)measurements
• Reflect on what to measure and what not to measure

• Develop professional norms.

• Limits of existing social theories
• Integrate data and measurements into the theory construction process

• Establish transparent, participatory processes for examining algorithmically infused societies



Image by E Bozzarelli

Complex SystemML Life-cycle
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Representations of Complex Systems

70L. Torres, A. Sizemore Blevins, D. S. Bassett, T. Eliassi-Rad: The Why, How, and When of Representations for Complex 
Systems. SIAM Review 63(3): 435-485 (2021). https://doi.org/10.1137/20M1355896  

Leo Torres

Ann Sizemore Blevins

Danielle Bassett

https://doi.org/10.1137/20M1355896


Spoiler⚠

• There is no perfect way to analyze a complex system. 

• Modeling decisions made when examining a data set from one system 
are not necessarily …

• transferable to another system, 

• or even to another data set from the same system.
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Prototypical analysis pipeline for complex 
systems
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Prototypical analysis pipeline for complex 
systems

Data

Model Optimization 
Algorithm

Loss 
Function

ML enters the pipeline here.
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What dependencies exist in our system?
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What dependencies exist in our system?

• Subset: Are subsets of sets implied?
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What dependencies exist in our system?

• Subset: Are subsets of sets implied?

• Temporal: Are walks Markovian?
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What dependencies exist in our system?

• Subset: Are subsets of sets implied?

• Temporal: Are walks Markovian?

• SpaFal: Are nearby nodes likely to connect?
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Are subsets of related nodes necessarily 
related? 
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Are subsets of related nodes necessarily 
related? 

• O!; H!O ⊂ H!; O!; H!O 	𝐚𝐧𝐝	
• H!; O!; H!O ∈ ℛ	𝐛𝐮𝐭
• O!; H!O ∉ ℛ

ℛ:
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Will incorporaMng temporal dependencies 
yield more accurate representaMons?
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Spatial dependencies within a system can 
complicate our representations of the data
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External sources of dependencies

• Data availability
• However big, your data is incomplete.

• KDD’19 tutorial on network discovery: https://eliassi.org/kdd19tut.html

• Data acquisition and processing
• Transitivity dependency in projected bipartite graphs does not show up in unipartite 

graphs.

• [Gupte & Eliassi-Rad, WebSci’12]

• Research question
• The question should influence the definition of a relation.

• Could a common food have caused a disease outbreak? 
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Understanding system dependencies is a first 
step in the complex system analysis pipeline

83



Three types of frameworks composed from 
nodes and relations

84



Co-authorship data: Each framework offers its 
own perspective
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Tenure-track positions are advantageous 
positions in society
• Getting a tenure-track position depends on many factors
• School/department: ranking and reputation
• Advisor(s): professional standing
• Publications: where and how many 
• Letter writers: professional standing
• …

• Letter writers (at least in STEM fields) are often co-authors
• We study the ‘who you know’ effect
• Assumption: Researchers who collaborate with prominent faculty may receive 

unfair advantages when applying for faculty positions
86
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‘Who you know’ effect

• We study CS faculty placement using graph and hypergraph representations of the 
temporal co-authorship networks.

• We use GNNs to capture the signals in these networks and predict whether a 
researcher is hired at a high, medium, or low ranked university based on their co-
author network leading up to their hire. 

• Preliminary results: 

• There is more signal in the exclusivity that hypergraphs capture than pairwise 
interactions of a simple graph.

• Publishing within a tightly-knit community of prominent and productive 
researchers result in a hiring advantage. 
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IntervenMons

• So what? Tell me something I don’t 
know. 

• What are the number and types of 
addiFonal collaboraFons which will 
improve a hiring candidate’s 
likelihood of being hired at a 
high-ranked university?
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Dies et al. Conference on Complex Systems 2023

Ongoing work

Samantha Dies



Choosing a framework marks the second step 
of our analysis pipeline
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TransiConing between frameworks requires added 
assumpCons or engenders forgeDng informaCon
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Transitioning between frameworks requires added 
assumptions or engenders forgetting information

losing information

91



Transitioning between frameworks requires added 
assumptions or engenders forgetting information

losing information

Making assumptions 92



TransiConing between frameworks requires added 
assumpCons or engenders forgeDng informaCon

≠
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The three frameworks and their analyses can offer 
different perspectives on a complex system
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Variations

• Directed
• Weighted
• Dynamic
• Multiplex
• Multilayer
• Higher-order

Image from Kinsley AC, Rossi G, Silk MJ and VanderWaal K 
(2020) MulJlayer and MulJplex Networks: An IntroducJon to 
Their Use in Veterinary Epidemiology. Fron%ers in Veterinary 

Science 7:596. doi: 10.3389/fvets.2020.00596

Mul>plex Multilayer
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Some of our efforts

• Talent is everywhere
• Allen, Eliassi-Rad, Fitelson. The Future of Affirmative Action, 2014
• Liu et al. AI, Ethics, and Society 2021

• Democratic backsliding
• Wiesner et al. European J. of Physics 2019
• Eliassi-Rad et al. Humanities & Social Sciences Communications 2020

• Information access equality 
• Wang, Varol, Eliassi-Rad. Applied Network Science 2022

• COVID-19 & the US criminal justice systems
• Klein et al. Nature 2023

• Interventions on academic hiring
• Dies et al. Conference on Complex Systems 2023

• Using sequences of life-events to predict human lives
• Germans Savcisens, et al. Nature Computational Science 2023
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Democracy in the balance

• According to The Economist (13 November 2023), 
76 countries will hold elecFons in 2024. 

• That is equivalent to more than half of the world’s 
populaFon going to the polls in 2024. 

• EIU has a Democracy Index for 71 of the 76 countries.

• Of these, 43 countries (more than 60%) have free and fair elec>ons. 

• In the other 28 countries, this is not the case. 
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Democracy has all the features 
of a complex system.



• Randomness of interactions is important 
to self-organization 

• Democracy requires an unstructured 
exchange of opinions and ideas between 
citizens

• Caveat: Instability arises when 
randomness increases beyond a critical 
level

• Instability: chaos and collapse in terms of 
consensual norms

Image by E Bozzarelli
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• Instability: chaos and collapse in 
terms of consensual norms

• “… propels people into 
accommodating “lying 
demagogues” because their brazen 
lies signal opposition to the 
disdained establishment.” 
Hahl et al. (2018)

Image by E Bozzarelli
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DemocraMc backsliding

104



Democratic backsliding is, in part, the result 
of instability in the democratic system.  

AI technology that amplifies misinformation and 
disinformation increases instability in democracy.
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Stability 

🙂 🙁

(a) (b)
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(Temporal) Stability vs. (Modal) Robustness

Stability
• Persistence over time 
• Resistance to perturbation or 

change
• Example: a rock on top of a peak 

is not stable

Robustness
• Insensitivity or independence of 

the behavior of the system to 
changes in possible microscopic 
realization
• Example: kNN is not robust

For a detailed discussion of stability, see hNps://bit.ly/3gFfRzI
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(Temporal) Stability vs. (Modal) Robustness

Stability
• Persistence over time 
• Resistance to perturbation or 

change
• Example: a rock on top of a peak 

is not stable

Robustness
• Insensitivity or independence of 

the behavior of the system to 
changes in possible microscopic 
realization
• Example: kNN is not robust

For a detailed discussion of stability, see https://bit.ly/3gFfRzI

A stable system need not be robust nor a robust system stable. 108
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Understanding democracy as a complex system 
enables us to make policy recommendations 

to counteract democratic backsliding 
(including ones caused by AI technology). 
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Policy recommendations

Top-down
1. Entrench diversity by regulation

2. Monitor feedback

3. Ensure connectivity

Bottom-up
1. Recruit credible communicators in 

estranged regions

2. Recognize limits to message control

3. Emphasize persistence and limits to 
forecas>ng

hKps://rdcu.be/b5yne (February 2020) 110

https://rdcu.be/b5yne


Disclaimer on policy recommendations

• Our recommendations do not form a hierarchy

• Their effectiveness is context dependent

• The way in which these recommendations can be put into practice will differ 
from country to country

• Our recommendations are also not independent of each other

• Example: failure in recruiting credible communicators increases the likelihood 
of failure in recognizing limits of message control 

• Democracy is an evolving project

111https://rdcu.be/b5yne (February 2020) 
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Downloadable from http://eliassi.org/pubs.html 
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Machine learning (ML) systems are not islands. 

They are part of broader complex systems.

To understand and mitigate the risks and harms of using ML, 
we must remove our optimization blinders & study the 
broader complex systems in which ML systems operate.
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Thank you!

Any questions?
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Complex networks are ubiquitous 
Technological Networks

Information Networks

Social Networks

Biological networks

Internet NY State Power Grid Friendship HP Emails

Contagion of TBFood Web



Social and information networks

Map of Science



Common mechanisms and properties limiting 
minority nodes’ access to information

118

L. Espín-Noboa, C. Wagner, M. Strohmaier, F. Karimi. Inequality and Inequity in Network-based Ranking and 
Recommenda>on Algorithms. Scien&fic Reports 12 (1): 1-14 (2022)

PreferenJal aKachment Homophily

Node activity Edge density
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What is the interplay between network structure and 
the spreading process for information access equality?

Onur VarolXindi Wang

X. Wang, Onur Varol, T. Eliassi-Rad. InformaUon Access Equality on GeneraUve Models of Complex Networks. 
Applied Network Science, Volume 7, ArUcle 54, 2022. h>ps://doi.org/10.1007/s41109-022-00494-8 

https://doi.org/10.1007/s41109-022-00494-8


Growth mechanisms

• Majority/minority dichotomy

• Homophily

• Preferential attachment

• Diversity
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Growth mechanisms

• Majority/minority dichotomy

• Homophily

• Preferential attachment

• Diversity

Spreading processes

• Simple vs. complex contagions

• Symmetric vs. asymmetric 
transmission rates

• Various seeding condiFons
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Information access equality

• Spreading processes can take different times in different complex networks
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Information access equality

• Spreading processes can take different times in different complex networks
• Measure information access equality at different stages of the spreading process
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InformaMon access equality

• Spreading processes can take different >mes in different complex networks
• Measure informa>on access equality at different stages of the spreading process
• Normalize frac>on of nodes in state 𝐼 (Infected) at each >me step 𝑡 by the length 

of the spreading process 𝑇 to obtain 𝐼(𝑡/𝑇)

Δ𝐼 𝑡/𝑇 =
𝐼!"# 𝑡/𝑇 − 𝐼!$% 𝑡/𝑇
𝐼!"# 𝑡/𝑇 + 𝐼!$% 𝑡/𝑇

∈ [−1, 1]
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Information access equality

• Spreading processes can take different times in different complex networks
• Measure information access equality at different stages of the spreading process
• Normalize fraction of nodes in state 𝐼 (Infected) at each time step 𝑡 by the length 

of the spreading process 𝑇 to obtain 𝐼(𝑡/𝑇)

Δ𝐼 𝑡/𝑇 =
𝐼!"# 𝑡/𝑇 − 𝐼!$% 𝑡/𝑇
𝐼!"# 𝑡/𝑇 + 𝐼!$% 𝑡/𝑇

∈ [−1, 1]
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∆𝑰 𝒕/𝑻 Meaning

< 0 Minority group is at an advantage
= 0 Equality
> 0 Majority group is at an advantage



What did we find?

1. Information access equality is a complex interplay between network 
structures and the spreading processes.
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1. Information access equality is a complex interplay between network 
structures and the spreading processes.

2. There is a trade-off between equality and efficiency of information access 
under certain circumstances (e.g., low inter-group edges and asymmetric 
transmission).
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What did we find?

1. Information access equality is a complex interplay between network 
structures and the spreading processes.

2. There is a trade-off between equality and efficiency of information access 
under certain circumstances (e.g., low inter-group edges and asymmetric 
transmission).

3. Spreading process features are statistically significant (p-value ≤ 0.05) 
when it comes to information access equality.
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What did we find?

1. Informa>on access equality is a complex interplay between network structures 
and the spreading processes.

2. There is a trade-off between equality and efficiency of informa>on access under 
certain circumstances (e.g., low inter-group edges and asymmetric 
transmission).

3. Spreading process features are sta>s>cally significant (p-value ≤ 0.05) when it 
comes to informa>on access equality.

4. Network features are not always sta>s>cally significant. But two network 
features stand out w.r.t. informa>on access equality: degree inequality and 
network distance.
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Downstream impact

• Our findings can be used to recommend connections that steer an online 
social network toward information access equality for a given topic. 
• Ideally, such recommendation systems will first classify the spreading 

process, then based on the classification recommend new connections to 
their users.
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Prison populaMon fell during COVID-19

1. Almost all courts shut down, 
reducing the admission rate by 70 
percent.

2. Prisoners were released in response 
to the pandemic. 

132
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https://www.medrxiv.org/content/10.1101/2021.12.14.21267199v3
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Prison population fell during COVID-19

• The fraction of incarcerated Black and 
Latino people increased.

• But in most states, the released 
prisoners were not disproportionately 
white.

🤔
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Dynamics of the US prison populaMon

1. Non-white people tend to get longer sentences than white people for the 
same crimes.

• With fewer prisoners coming in over the course of the pandemic and with white prisoners 
disproportionately serving shorter sentences, the population skewed Black and Latino.

2. During the pandemic, prosecutors pushed hard for pre-trial plea deals to 
complete cases. 

• Plea deals result in a disproportionate number of Black defendants spending time in prison.

3. Decreasing the flow of new admissions increased the non-white population.

• The Black-white disparity in new prison admissions is typically a ratio of 2:1, whereas it is 
closer to 6:1 for the total incarcerated.
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Why should you care?

• There is still a large backlog of cases in the criminal legal system 
stemming from delays in the early stages of the pandemic

• The structural problem in the U.S. criminal legal system will continue 
to worsen unless we address the sentencing inequities in the legal 
system and work toward reforms that will produce a more equitable 
and just system

137


